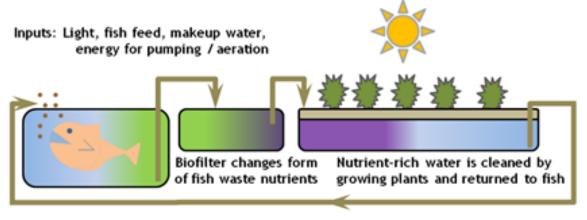


Getting Started in Aquaculture Information Session

Aquaponics

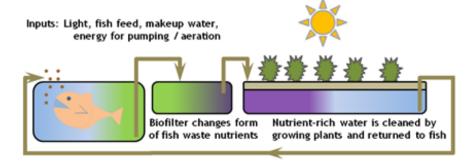


Daniel Stechey (905) 377-8501 stechey@cogeco.ca

Why Aquaponics?

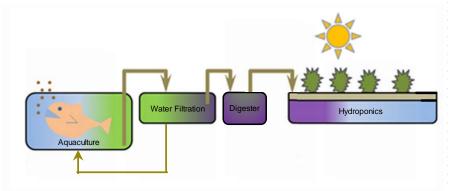
- Nitrate is a by-product in intensive aquaculture systems and must be removed
- Denitrification systems can be complex and add an additional cost

Plants provide a denitrification function and provide an additional saleable crop


Scotts)

Turf Builder

Coupled v. De-Coupled Systems


Coupled Systems

Common water for fish and plants

De-coupled Systems

- Independent recirculation systems for fish and plants
- Nutrients are digested and then transferred to plants

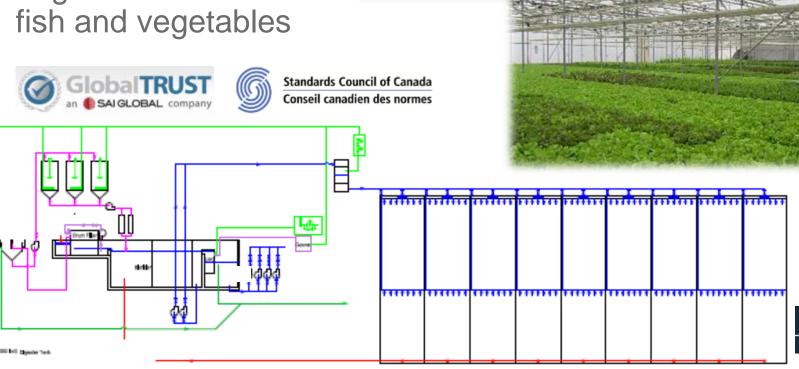
Media Bed Technique

- Inert medium (clay balls, coco fibre) used to secure roots
- Beds flooded and drained or drip-irrigated
- Advantages:
 - High surface area for growth of beneficial bacteria in root zone
 - Excellent for vine crops
- Disadvantages:
 - In coupled aquaponics, media can trap solids and promote growth of deleterious bacteria

Deep Water / Raft Technique

- Common in aquaponics
- Plants float on rafts
- Advantages:
 - Allows for well-mixed, aerated troughs
 - Relatively low risk
 - Water volume provides thermal mass for stable temperatures
- Disadvantages:
 - Structural requirement to support weight of water
 - Solids settling in tanks

Nutrient Film Technique Plants placed in shallow troughs with fast-flowing water Advantages: Higher plant densities Lower weight enables vertical stacking



Aqua Greens, Mississauga, ON

Trend AquaFresh Organics, Niagara

- 50 tonnes annual fish production
- **❖** 400,000 − 600,000 heads of leafy vegetables
- Organic certification for fish and vegetables

AQUAPONICS Economics

Completed Builds	sq Ft	Total Cost	Cost per Sq ft	
Hong Kong	25,833	\$400,000	\$15.48	
Bahrain	4,306	\$200,000	\$46.45	
Oman	4,306	\$100,000	\$23.23	
Toronto*	2,000	\$19,000	\$9.50	
Newmarket^*	1,000	\$42,000	\$42.00	
India	3,200	\$60,000	\$1 8.75	

^{*}Volunteer Labour only

Production

- Production Estimates Vary Wildly
- Forecast from LEARNED EXPERIENCE
- Importance of phased build-out
- Feasibility, Partners, Human Capital

Capital Expense

- Cost to build systems varies by 300%
 - High \$45 sq. / ft.
 - 25+ year lifespan, concrete or FRP
 - Artificial Lighting
 - Low \$10.00 / sq. ft.
 - Lumber + Liner
 - Volunteer Labour

Retail Prices

- Organic up to +40% higher prices,
- Can you get certified?
- CSA vs. Retail vs. Farmers Markets
- Institutional Opportunities

^{*}Indoor Systems

AQUAPONICS Canadian Challenges

- Heating
- Artificial Lighting bulb type, LED, waste heat output, Lumens, cost
- Risk is not well understood
- Supply chain is not well established
- Lack of human capital
- Steep learning curve
- Few commercially successful operations, no 'models'

Aquaponics v. Hydroponics

- Purdue University study (Flores et al. 2018)
 - Two experimental systems for production of basil, lettuce and cherry tomato
 - One aquaponics (tilapia) and one hydroponics (commercial fertilizers)
 - Capital cost was 8% higher for aquaponics
 - Operating cost was 12% higher for aquaponics

Table 1 - Financial results for aquaponics and hydroponics

	Hydroponics	Aquaponics				
Results		Non- organic prices	10% veg. price increase	20% veg. price increase	30% veg. prices increase	
IRR (%)	48.7	18.27	32.61	45.83	58.51	
NPV (\$)	73,872	20,144	47,447	74,750	102,052	
Payback (yrs)	3.13	6.83	4.04	3.25	2.79	
Benefit/Cost	1.36	1.11	1.22	1.32	1.43	

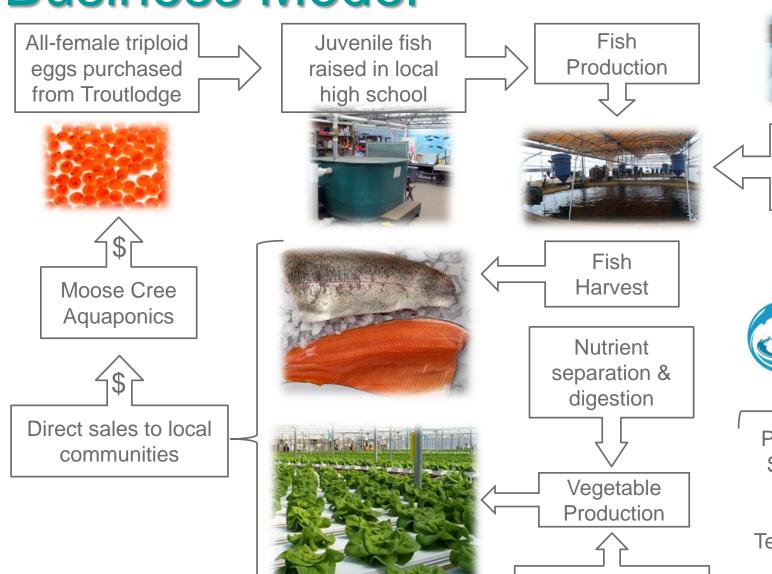
Moose Cree First Nation Aquaponics An Opportunity for Remote Communities

- Local production of nutritious fish and vegetables on a year-round basis leading to healthier diets
- More reasonable prices for fresh fish and vegetables
- Enhanced food security and self-sufficiency
- An opportunity to provide diversified experiences for youth and other community members
- Integrated with the science and culinary arts programs in the school system
- Employment opportunities within the community
- Potential spin-off opportunities utilizing by-products from the operation (e.g. processing by-products)

Products

Fresh, farmed-raised fish and vegetables

- Fresh rainbow trout
 - ~1,000 kilograms of fish / month
 - 250 kg per week
- Leafy vegetables
 - ~65,000 heads per year
 - Lettuces, basil, spinach, herbs, etc.
- Specialty Crops (in future)
 - Strawberries



Business Model

Competitive tender: Fish feed supply

Project Planning
System Design
Tendering
Project Mgmt
Technical Support
Training
QC/QA

Seed Propagation

Community Model

Developing a related curriculum for implementation in the local school is a key part of the initiative

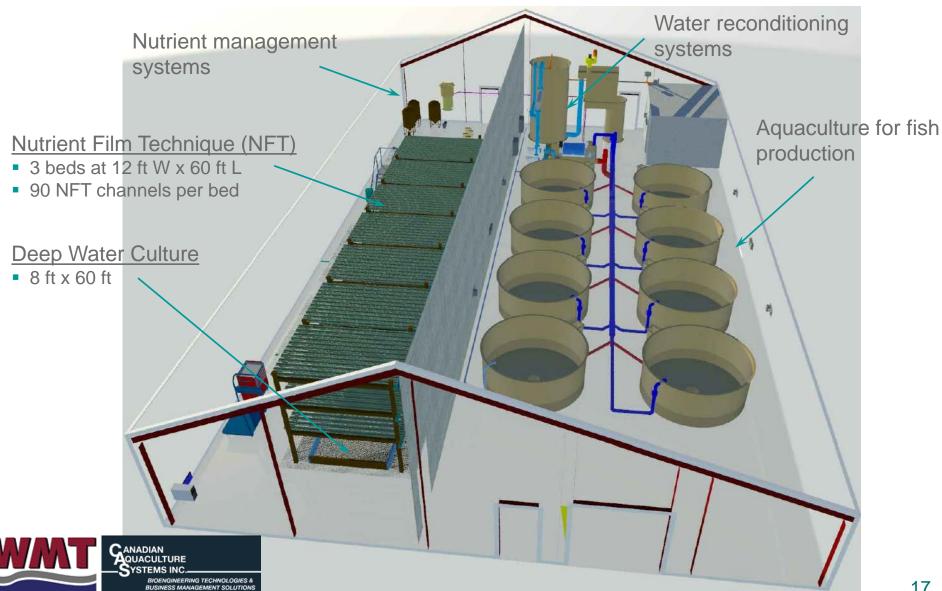
Aquaculture

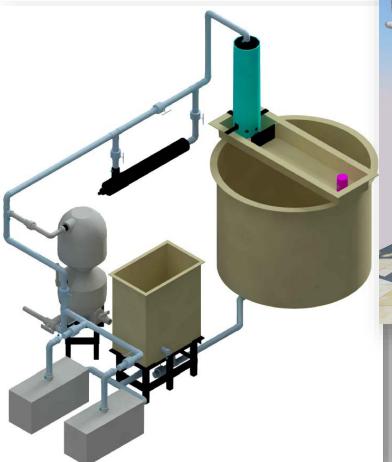
- Students will produce juvenile trout for ongrowing in the venture
- Key curriculum components:
 - Biology
 - Environment
 - Mathematics
 - Chemistry

Hydroponics

- Students will propagate seedlings for on-growing in the venture
- Key curriculum components:
 - Biology
 - Environment
 - Mathematics
 - Chemistry

Culinary Arts


- Students will prepare meals using fish and vegetables from the venture
- Key curriculum components:
 - Food Preparation
 - Health & Nutrition
 - Food Safety


Aquaponics Venture

Moose Cree Aquaponics Demonstration System

Aquaculture System

Hydroponic System

Creating Prosperity – One Client at a Time

- ✓ Understanding the circumstances
- ✓ Developing innovative solutions
- ✓ Delivering results on time, on budget, no surprises

www.canadianaquaculturesystems.com

