

Getting Started in Aquaculture Information Session

Overview of Technologies & Practices

Daniel Stechey (905) 377-8501 <u>stechey@cogeco.ca</u>

Aquaculture – In the Beginning

- Aquaculture has been practised in some form for thousands of years primarily in freshwater ponds and impoundments with minimum technical intervention but low yields
- Culture had two purposes
 - to provide food for the producer
 - for trade
- First Nations in British Columbia built clam gardens thousands of years ago to create habitat for clam production
 - Building a rock wall at the low tide mark creates an ideal beach habitat for clams

Aquaculture – Emergence of Net Pen Culture

- Modern (for-profit) phase of finfish aquaculture began in the 1970s
 - Development of large-scale net pen operations
 - Countries saw the advantage of growing fish in the oceans and in large bodies of freshwater
 - Technology and economics became favourable
- This strategy has been highly effective on a global scale; e.g.
 - Salmon in Norway, Scotland, Chile, Canada, Australia
 - Sea bream and sea bass in Mediterranean countries
 - Trout in Ontario

Aquaculture – Evolution of RAS

- More sophisticated rearing strategies such as re-circulating aquaculture systems (RAS) have been developed
 - Suited to production of high-value species and juveniles
 - Advantage in areas with limited water supplies
- These systems are more expensive (capital and operating costs) and some can be technically complex
- Can be deployed anywhere there is a modest supply of water and access to power and other infrastructure
- For the most part, they are isolated from the natural environment

Egg & Fingerling Supply

- Several commercial hatcheries throughout Canada produce eggs and fingerlings for sale to on-growers
 - Many have own broodstock
 - Some import eggs from Troutlodge, Riverence and others
 - Eggs available 12 months per year
 - Canadian rainbow trout broodstock program is being planned

Hatching

Eggs are typically hatched in troughs, tray incubators or bell jars

6

Fingerlings

Pond Production

Raceway Culture

Circular Tanks

Octagonal Tanks

Floating Containment Systems

Land-Based Facility Design

Unlike in traditional animal production systems and in net pen aquaculture, there is a lack of standardization in land-based aquaculture

Various Land-Based Designs

Most systems will grow fish, but...

The objective is to grow fish

and make money.....

Atlantic Sapphire

Veolia Water Technologies

Key Factors

- Capital cost matters
 These vary widely according to design and location
- Maximum daily feed ration is fundamental
 RAS units are designed to process metabolic by-products
- It really doesn't really matter what kind of fish you're feeding
 - FCR

Inventory turnover does matter

- Time to reach market size
- Number of cohorts per year

Average annual selling price does matter

- Atlantic salmon
- Rainbow trout
- Salmon smolts

Production Modeling

It is more productive and efficient to schedule multiple cohorts per year

3 cohorts / year

4 cohorts / year

 Approximately 30% more production in the same system with 4 cohorts per year
 More stable loading on the systems

Sand Plains AquaCulture

Smolt Production

<image>

Production

- 14 million smolts / year
- Up to 850 kg feed / day / unit
- ♦ 99% recirculation
- Simple, low-head design

19

Danish Model Farm Program

Land-Based Salmon Farm

- 250 tonnes Atlantic salmon / year
- Independent brood stock facility
- 7 RAS units with up to 890 kg feed / day
- ✤ >99% recirculation

Canadian Model Aqua-Farm

- 130 tonne trout farm ♦ 99% recirculation
- Simple, low-head design
- ♦ 430 kg feed / day

Canadian Model Aqua-Farm Program

Commercial RAS

Production

- Hatchery, early rearing & grow-out
- 200 tonnes coho / year
- 725 kg feed / day
- ✤ 99.7% recirculation
 - System flow = 34,000 Lpm
 - Make-up water = 118 Lpm

Trend AquaFresh

Production

- 50 tonnes fish / year
 200 kg feed per day
- 200 kg feed per day

Canadian Model Aqua-Farm

Year-round production
 40,000 20g fry every 3 months
 12 months to ~1200g @ ~10°C
 Harvest ~10,800 kg per month
 Harvest at 900 – 1000 g

Model Farm Layout

- Simple, efficient design to fit in a barn
- 130 tonnes / year
- New water ~227 Lpm
- Total Flow 1,230 m³/h
- ♦ 61mL x 10.4mW x 1.7mD

- ✤ Vol _{Total} = 982 m³
- ✤ Vol _{Rearing} = 716 m³
- Recirc'n = 33% vol/d or 98.9% Q
- Density _{Max} = 69 kg/m³
- Ration _{Max} = 430 kg/d

Financial Metrics

Capital Cost

- Does not include barn, well, manure lagoon (sunk costs)
 - \$6,317 per tonne of production capacity

Total investment and financial results will vary according to site-specific factors

	Budget	Actual	Variance	Rationale
Infrastructure	\$ 46,200	\$ 127,047	\$ 80,847	Upgraded electrical supply
Raceway & Purge Tank	\$ 173,000	\$ 157,243	\$ -15,757	
RAS Equipment	\$ 405,000	\$ 464,901	\$ 59,881	Sludge cones, microparticle filter, inflation, currency exchange
Fish Culture Equipment	\$ 30,360	\$ 30,360	\$ 0	
Other Equipment	\$ 38,500	\$ 46,746	\$ 8,246	Over-tank walkways
Total Capital Cost	\$ 693,080	\$ 826,296	\$ 133,216	D = 19%

Financial Metrics

Working Capital Feed, Fingerlings, Power, Supplies, etc.

	Budget	Actual	
Feed (\$/tonne)	\$1,582	\$1,416	
Electricity (\$/ month)	\$4,185	\$3,300	
Fingerlings (\$/ 20g)	\$0.28	\$0.335	
Selling price (\$/ kg)	\$3.97	\$4.18	

Notes:

- Selling price in 2017 is \$5.40 / kg
- Feed cost in 2017 is \$1,866 / tonne

Cost of Goods Sold (2017 Update)

		\$/kg	% Sales
Harvest (kg)	130,800	_	
TOTAL REVENUES	\$706,320	\$5.40	100.0%
Cost of Production			
Opening Inventory	\$136,727	\$1.05	
Feed	\$317,352	\$2.43	44.9%
Fingerlings	\$62,212	\$0.48	8.8%
Electricity	\$50,224	\$0.38	7.1%
Labour	\$31,200	\$0.24	4.4%
Maintenance & Repairs	\$11,574	\$0.09	1.6%
Supplies	\$5,556	\$0.04	0.8%
Stock Insurance	\$7,157	\$0.05	1.0%
	\$622,001	\$4.76	
Closing Inventory	\$136,723	\$1.05	
Cost of Sales	\$485,279	\$3.71	68.7%
Gross Margin	\$221,041	\$1.69	31.3%

Indirect Costs (2017 Update)

Indirect Costs			
Depreciation	\$52,718	\$0.40	7.5%
Professional Services	\$6,000	\$0.05	0.8%
Insurance	\$3,600	\$0.03	0.5%
Interest	\$24,547	\$0.19	3.5%
Telecommunications	\$2,400	\$0.02	0.3%
Office Expense	\$600	\$0.00	0.1%
Vehicle Expenses	\$6,000	\$0.05	0.8%
Total Indirect	\$95,866	\$0.73	13.6%
Profit/(Loss) before taxes	\$125,176	\$0.96	17.7%
Taxes	\$19,403	\$0.15	2.7%
Profit/(Loss) after taxes	\$105,772	\$0.81	15.0%

Total CF = Labour + Net Cash Flow

EBITDA = 28.7%

= \$137,380

Financial Metrics

Capital Cost

- ~\$10,000 to \$15,000 per tonne of production
- Working Capital

- Feed, Fingerlings, Labour, Power, Supplies, etc.
- ~\$2,000 to \$5,000 per tonne of production

Revenue

~\$5,000 to 7,000 per tonne (round weight, farm gate)

Return

Net Cash Flow ~\$1,100 to \$1,800 per tonne (before tax)
EBITDA = 23% to 28%

Creating Prosperity – One Client at a Time

- Understanding the circumstances
- ✓ Developing innovative solutions
- Delivering results on time, on budget, no surprises

www.canadianaquaculturesystems.com

