

Getting Started in Aquaculture Information Session

Aquaponics

Daniel Stechey (905) 377-8501 <u>stechey@cogeco.ca</u>

Why Aquaponics?

- Nitrate is a by-product in intensive aquaculture systems and must be removed
- Denitrification systems can be complex and add an additional cost
- Plants provide a denitrification function and provide an additional saleable crop

www.sfi.mtu.edu

Coupled v. De-Coupled Systems

- Coupled Systems
 - Common water for fish and plants

- De-coupled Systems
 - Independent recirculation systems for fish and plants
 - Nutrients are digested and then transferred to plants

Media Bed Technique

- Inert medium (clay balls, coco fibre) used to secure roots
- Beds flooded and drained or drip-irrigated
- Advantages:
 - High surface area for growth of beneficial bacteria in root zone
 - Excellent for vine crops
- Disadvantages:
 - In coupled aquaponics, media can trap solids and promote growth of deleterious bacteria

Deep Water / Raft Technique

- Common in aquaponics
- Plants float on rafts
- Advantages:
 - Allows for well-mixed, aerated troughs
 - Relatively low risk
 - Water volume provides thermal mass for stable temperatures
- Disadvantages:
 - Structural requirement to support weight of water
 - Solids settling in tanks

Nutrient Film Technique

- Plants placed in shallow troughs with fast-flowing water
- Advantages:
 - Higher plant densities
 - Lower weight enables vertical stacking

Aqua Greens, Mississauga, ON

Trend AquaFresh Organics, Niagara

- ✤ 50 tonnes annual fish production
- ♦ 400,000 600,000 heads of leafy vegetables
- Organic certification for fish and vegetables

(1.50) bill thereby had

AQUAPONICS Economics

Capital Expense

Completed Builds Total Cost Cost per Sq ft sq Ft Hong Kong **\$**15.48 \$400,000 25,833 Bahrain \$200,000 \$46.45 4,306 **\$23**.23 Oman 4.306 \$100,000 \$9.50 Toronto* 2,000 \$19,000 Newmarket^* 1.000 \$42,000 \$42.00 **\$1**8.75 \$60,000 India 3,200

*Volunteer Labour only

*Indoor Systems

- ** Cost to build systems varies by **300**%
 - High \$45 sq. / ft.
 - 25+ year lifespan, concrete or FRP
 - **Artificial Lighting**
 - Low \$10.00 / sq. ft.
 - Lumber + Liner
 - Volunteer Labour

Organic up to +40% higher prices,

Retail Prices

Production

- * **Production Estimates Vary Wildly**
- Forecast from LEARNED EXPERIENCE **
- ** Importance of phased build-out
- ** Feasibility, Partners, Human Capital

*

*

Institutional Opportunities

Can you get certified?

AQUAPONICS Canadian Challenges

- Heating
- Artificial Lighting bulb type, LED, waste heat output, Lumens, cost
- Risk is not well understood
- Supply chain is not well established
- Lack of human capital
- Steep learning curve
- Few commercially successful operations, no 'models'

Aquaponics v. Hydroponics

Purdue University study (Flores et al. 2018)

- Two experimental systems for production of basil, lettuce and cherry tomato
- One aquaponics (tilapia) and one hydroponics (commercial fertilizers)
- Capital cost was 8% higher for aquaponics
- Operating cost was 12% higher for aquaponics

		Aquaponics			
Results	Hydroponics	Non- organic prices	10% veg. price increase	20% veg. price increase	30% veg. prices increase
IRR (%)	48.7	18.27	32.61	45.83	58.51
NPV (\$)	73,872	20,144	47,447	74,750	102,052
Payback (yrs)	3.13	6.83	4.04	3.25	2.79
Benefit/Cost	1.36	1.11	1.22	1.32	1.43

Table 1 – Financial results for aquaponics and hydroponics

Moose Cree First Nation Aquaponics An Opportunity for Remote Communities

- Local production of nutritious fish and vegetables on a year-round basis leading to healthier diets
- More reasonable prices for fresh fish and vegetables
- Enhanced food security and self-sufficiency
- An opportunity to provide diversified experiences for youth and other community members
- Integrated with the science and culinary arts programs in the school system
- Employment opportunities within the community
- Potential spin-off opportunities utilizing by-products from the operation (e.g. processing by-products)

Products

Fresh, farmed-raised fish and vegetables

- Fresh rainbow trout
 - ~1,000 kilograms of fish / month
 - 250 kg per week
- Leafy vegetables
 - ~65,000 heads per year
 - Lettuces, basil, spinach, herbs, etc.
- Specialty Crops (in future)
 - Strawberries

Business Model

Community Model

 Developing a related curriculum for implementation in the local school is a key part of the initiative

Aquaculture

- Students will produce juvenile trout for ongrowing in the venture
- Key curriculum components:
 - Biology
 - Environment
 - Mathematics
 - Chemistry

Hydroponics

- Students will propagate seedlings for on-growing in the venture
- Key curriculum components:
 - Biology
 - Environment
 - Mathematics
 - Chemistry

Culinary Arts

- Students will prepare meals using fish and vegetables from the venture
- Key curriculum components:
 - Food Preparation
 - Health & Nutrition
 - Food Safety

Aquaponics Venture

Moose Cree Aquaponics Demonstration System

Aquaculture System

Hydroponic System

Creating Prosperity – One Client at a Time

- Understanding the circumstances
- ✓ Developing innovative solutions
- Delivering results on time, on budget, no surprises

www.canadianaquaculturesystems.com

